Spatial and altitudinal bioclimatic zones of the Italian peninsula identified from a beech (Fagus sylvatica L.) tree-ring network

نویسندگان

  • Gianluca Piovesan
  • Franco Biondi
  • Mauro Bernabei
  • Alfredo Di Filippo
  • Bartolomeo Schirone
چکیده

A network of 24 beech (Fagus sylvatica L.) tree-ring chronologies has been developed for the Italian peninsula. Principal component and cluster analyses were used to identify geographical and altitudinal patterns of tree growth. Correlations and response functions were then applied to the main modes of tree-ring variability to uncover climatic signals. In a landscape occupied by humans for millennia, this approach provided a detailed quantitative ecological characterization of forest types. Altitude was significantly correlated with dendrochronological parameters. The Alps and northern Apennines could be distinguished from the central-southern Apennines. In central Italy, we recognized three different vegetation belts occupied by beech forests, from lowto high-elevation sites. Summer drought impacted beech growth with different intensity at different elevations, depending on the onset and duration of the growing season. Moreover, low-elevation beech forests showed a distinct late spring climate signal, which was opposite to that of high-elevation sites. The coherent geographical and ecological patterns of tree-ring variability suggest that dendrochronological networks help define bioclimatic zones and forest types. © 2005 Elsevier SAS. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sensitivity of Beech Trees to Global Environmental Changes at Most North-Eastern Latitude of Their Occurrence in Europe

The present study aimed to detect sensitivity of beech trees (Fagus sylvatica L.) to meteorological parameters and air pollution by acidifying species as well as to surface ozone outside their north-eastern distribution range. Data set since 1981 of Preila EMEP station enabled to establish that hot Summers, cold dormant, and dry and cold first-half of vegetation periods resulted in beech tree g...

متن کامل

Twentieth century changes of tree-ring dC at the southern range-edge of Fagus sylvatica: increasing water-use efficiency does not avoid the growth decline induced by warming at low altitudes

We aimed to gain knowledge on the changes in intrinsic water use efficiency (iWUE) in response to increasing atmospheric CO2 concentrations and climate change over the last century. We investigated the variation in the iWUE of mature Fagus sylvatica trees located in the higher, central and lower altitudinal forest limits (HFL, CFA and LFL) of one of the southernmost sites of beech distribution ...

متن کامل

Hitchhiking with forests: population genetics of the epiphytic lichen Lobaria pulmonaria in primeval and managed forests in southeastern Europe

Availability of suitable trees is a primary determinant of range contractions and expansions of epiphytic species. However, switches between carrier tree species may blur co-phylogeographic patterns. We identified glacial refugia in southeastern Europe for the tree-colonizing lichen Lobaria pulmonaria, studied the importance of primeval forest reserves for the conservation of genetically divers...

متن کامل

Major Changes in Growth Rate and Growth Variability of Beech (Fagus sylvatica L.) Related to Soil Alteration and Climate Change in Belgium

Global change—particularly climate change, forest management, and atmospheric deposition—has significantly altered forest growing conditions in Europe. The influences of these changes on beech growth (Fagus sylvatica L.) were investigated for the past 80 years in Belgium, using non-linear mixed effects models on ring-width chronologies of 149 mature and dominant beech trees (87–186 years old). ...

متن کامل

Insights into xylem vulnerability to cavitation in Fagus sylvatica L.: phenotypic and environmental sources of variability.

Xylem vulnerability to cavitation is a key parameter in understanding drought resistance of trees. We determined the xylem water pressure causing 50% loss of hydraulic conductivity (P(50)), a proxy of vulnerability to cavitation, and we evaluated the variability of this trait at tree and population levels for Fagus sylvatica. We checked for the effects of light on vulnerability to cavitation of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005